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A B S T R A C T   

Contamination with food-borne pathogens, such as Listeria monocytogenes, remains a big concern for food safety. 
Hence, rigorous and continuous microbial surveillance is a standard procedure. At this point, however, the food 
industry and authorities only focus on detection of Listeria monocytogenes without characterization of individual 
strains into groups of more or less concern. As whole genome sequencing (WGS) gains increasing interest in the 
industry, this methodology presents an opportunity to obtain finer resolution of microbial traits such as viru-
lence. Within this study, we therefore aimed to explore the use of WGS in combination with Machine Learning 
(ML) to predict L. monocytogenes virulence potential on a sub-species level. 

The WGS datasets used in this study for ML model training consisted of i) national surveillance isolates (n =
169, covering 38 MLST types) and ii) publicly available isolates acquired through the GenomeTrakr network (n 
= 2880, spanning 80 MLST types). We used the clinical frequency, i.e., ratio of the number of clinical isolates to 
total amount of isolates, as estimate for virulence potential. The predictive performance of input features from 
three different genomic levels (i.e., virulence genes, pan-genome genes, and single nucleotide polymorphisms 
(SNPs)) and six machine learning algorithms (i.e., Support Vector Machine with a linear kernel, Support Vector 
Machine with a radial kernel, Random Forrest, Neural Networks, LogitBoost, and Majority Voting) were 
compared. 

Our machine learning models predicted sub-species virulence potential with nested cross-validation F1-scores 
up to 0.88 for the majority voting classifier trained on national surveillance data and using pan-genome genes as 
input features. The validation of the pre-trained ML models based on 101 previously in vivo studied isolates 
resulted in F1-scores up to 0.76. Furthermore, we found that the more rapid and less computationally intensive 
raw read alignment yields comparably accurate models as de novo assembly. 

The results of our study suggest that a majority voting classifier trained on pan-genome genes is the best and 
most robust choice for the prediction of clinical frequency. Our study contributes to more rapid and precise 
characterization of L. monocytogenes virulence and its variation on a sub-species level. We further demonstrated a 
possible application of WGS data in the context of microbial hazard characterization for food safety. In the future, 
predictive models may assist case-specific microbial risk management in the food industry. The python code, pre- 
trained models, and prediction pipeline are deposited at (https://github.com/agmei/LmonoVirulenceML).   

1. Introduction 

Food-borne zoonotic diseases continue to pose an immense threat to 
public health. The European Food Safety Authority (EFSA) reports over 
350,000 cases of food-borne diseases annually in the European Union 
alone. Nevertheless, the actual number is estimated to be even higher 

since not all infections need medical attention (EFSA, 2023). Listeria 
monocytogenes is a concerning food-borne pathogen that can cause se-
vere and diverse pathogenesis (Listeriosis), especially in elderly or 
immunocompromised individuals and foetuses (McLauchlin, 1996). 
Even though, the incidence of listeriosis is relatively low (0.1 to 10 cases 
per 1 million people per year) (WHO, 2023), its high case fatality rate 
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(17.6 %) makes listeriosis one of the most concerning food-borne dis-
eases in the EU (EFSA and ECDC, 2021). 

L. monocytogenes is widely distributed in the environment and in 
farm animals from where it quickly enters into food processing facilities, 
regardless of the high food safety standards in place (Kasalica et al., 
2011). It is resilient to extreme environments and can withstand high 
salt concentrations, sustain a broad pH range, and grow at low (i.e., 
refrigeration) temperatures (Liu et al., 2005). 

Due to the possible severity of L. monocytogenes infections, many 
authorities have implemented thorough regulations on L. monocytogenes 
in food (Neri et al., 2019). Most of these food safety policies assess the 
risk of L. monocytogenes on a species level and do not consider within 
species variation. However, recent studies show substantial differences 
on a sub-species level. In particular, the distribution of L. monocytogenes 
subtypes differs significantly between different niches making it possible 
to associate some subtypes with either food or clinical environments 
(Gray et al., 2004; Maury et al., 2016, 2019; Orsi et al., 2011). Within 
these niches, isolates can also demonstrate different pathogenic poten-
tials. Predominantly, subtypes more frequently associated with the 
clinical cases are thought to be more virulent than those associated with 
food environments. Interestingly, recent studies also show that there are 
not only differences in virulence potential within different niches but 
that there are vast differences in pathogenicity, even within subtypes 
(Maury et al., 2016). These findings suggest that L. monocytoges viru-
lence might be strain specific (Muchaamba et al., 2022). Even though 
consideration of sub-species information in risk management might be 
challenging, the exploration of more detailed risk characterization of 
L. monocytogenes in the food industry remains of interest. 

In recent years, there has been an increasing interest in using Whole 
Genome Sequencing (WGS) techniques in the food industry (Ireland 
et al., 2018; Jagadeesan et al., 2018). The analysis of WGS data enables a 
very fine resolution of strains even to single nucleotide alternations. The 
benefits of this fine resolution can already be seen in other areas, such as 
pathogen surveillance and outbreak tracing (Rantsiou et al., 2018). 
Recent studies have also shown that WGS data can be used to predict 
important microbial traits such as virulence and antimicrobial resistance 
(Camp et al., 2020; Collineau et al., 2019; Njage et al., 2019; Pincus 
et al., 2020). A better understanding and prediction of certain microbial 
traits would allow food safety authorities to perform a more detailed 
characterization of microbial hazard. This refined hazard characteriza-
tion could then aid risk management decisions in case of 
L. monocytogenes contamination in the food industry. 

Hence, within this study, we further explore the use of Whole 
Genome Sequencing for microbial hazard characterization on sub- 
species level. In particular, we are focussing on the prediction of 
L. monocytogenes virulence potential (for simplicity, also referred to as 
‘virulence’ throughout the study) on a sub-species level into three 
different classes (i.e., lower, medium, and higher risk). We analysed 
WGS data from two national surveillance programs using Machine 
Learning (ML). Our study aimed to i) develop a well-performing ma-
chine learning predictor for L. monocytogenes virulence and ii) explore 
predictive differences of three genomic levels as input features for our 
ML models and iii) evaluate feature extraction by raw read alignment as 
a more rapid alternative to assembly based methods. The results of this 
study facilitate a more granular understanding of L. monocytogenes risk 
potential on a sub-species level. 

2. Materials and methods 

2.1. Data acquisition 

The 169 Whole Genome Sequencing isolates for this study were 
obtained from national surveillance programs in France (n = 60) and 
Denmark (n = 109). The genomic data from France were collected from 
a previous study (Maury et al., 2016). For the Danish isolates, genomic 
DNA was extracted using Invitrogen Easy DNA. The sequencing libraries 

were prepared with the Nextera XT DNA library preparation kit ac-
cording to the manufacturer's protocol (Illumina, Inc., San Diego, CA, 
United States). The DNA samples were sequenced using Illumina MiSeq. 
We deposited the raw sequencing data in the European Nucleotide 
Archive (http://www.ebi.ac.uk/ena) under accession no.: PRJEB59720. 
Both the French and Danish surveillance systems exhaustively collect all 
L. monocytogenes isolates found in the clinic and food industry. Since the 
systems are strictly controlled, we expect them to give a good overview 
of their respective country's epidemiological L. monocytogenes 
landscape. 

The national surveillance isolates originate from five different source 
locations: Denmark (n = 105), France (n = 38), Poland (n = 4), Tunisia 
(n = 1), and N/A (n = 21). There are five different isolation sources in 
total. Apart from the source label “Other” (42 %), most isolates are 
isolated from food (24 %), followed by human (20 %), animal (9 %), and 
laboratory (5 %) origin. The isolates were distributed over 38 different 
MLST types, with ST121 (15 %), ST8 (14 %), and ST6 (13 %) being the 
most abundant (see Table S1). 

To this date, only a few countries have implemented similar WGS 
surveillance systems for L. monocytogenes. Hence, the availability of 
epidemiologically exhaustive high-quality data remains sparse. Publicly 
available databases store a massive amount of sequencing data that 
could be used. However, it is important to remember that the deposition 
of sequencing data is often biased and might not be fully representative 
of the epidemiological landscape. For our study, we used WGS data 
collected through the GenomeTrakr network (FDA, 2022), which can be 
accessed through NCBI's Pathogen Detection Portal (NCBI, 2022). Even 
though different international institutions are contributing to the 
GenomeTrakr network, in this study, we focussed only on US American 
isolates as they were the most abundant. To mimic the national sur-
veillance data as much as possible, we limited our study to isolates 
collected between 2014 and 2018, as this corresponds to the timeframe 
of the Danish isolates. 

Additionally, we only used WGS isolates from a clinical or food/food 
processing environment setting (i.e., environmental isolates are 
excluded). For more detailed information about the inclusion criteria 
and isolation sources, see the supplementary metadata in Table S2. The 
subset of isolates was subtyped using MLST (v2.0) (Clausen et al., 2018; 
Larsen et al., 2012) and filtered for isolates of multi-locus sequence type 
(MLST) clusters for which there were at least one clinical and one food- 
related sample (n = 2880). 

In summary, the source of isolation for the GenomeTrakr isolates is 
either clinical (60 %) or environmental/other (40 %), mainly consisting 
of food and food processing environment isolates. Further, the dataset 
included 80 MLST types, with ST5 (17 %) and ST1 (12 %) being the most 
abundant. 

2.2. Sample pre-processing 

To confirm that all isolates are L. monocytogenes, we conducted 
species identification using KmerFinder (v3.0.2) (Clausen et al., 2018; 
Hasman et al., 2014; Larsen et al., 2014). Further, all raw sequencing 
reads were processed using the in-house FoodQC pipeline. The pipeline 
trims the raw reads with bbduk2 from BBTools (v36.49) (Bushnell, 
2022) using only reads ≥50 bp in length, having a Phred score per base 
≥20 from right to left, and filtering the institution-specific adapters. The 
trimmed reads were quality checked using FastQC (v0.11.5) (Andrews, 
2010) and assembled using SPAdes (v3.11.0) (Prjibelski et al., 2020) 
with a kmer coverage of two and excluding contigs that are smaller than 
500 bp. 

2.3. Clinical frequency as a measure of virulence 

In this study, we used the frequency of clinical cases to estimate 
L. monocytogenes virulence (i.e., harmfulness). The clinical frequency 
describes the ratio of the number of samples found in a clinical setting to 
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the total amount of samples (i.e., isolates found in a clinical and food 
industry setting). For the French isolates, the clinical frequency for in-
dividual clonal complexes (CC) was extracted from Maury et al. (2019). 
The clinical frequencies for each MLST group of the Danish data were 
derived from the annual report on zoonoses (Anonymous, 2019). 
Looking at the distribution of the isolates over the different clinical 
frequency classes, most of the isolates were in the lower-risk class (47 
%), followed by the mid-risk (33 %) and higher-risk class (20 %) 
(Fig. 1a). 

For the GenomeTrakr dataset, the isolates were grouped according to 
their MLST types and the group's respective clinical frequency was 
calculated according to Eq. (1). Where #clinical and #food represent the 
number of clinical and food isolates in each MLST, respectively. 

clinical frequency =
#clinical

(#clinical +#food)
(1) 

Each MLST or CC group has its individual clinical frequency value, 
which was used as an outcome variable for supervised Machine 
Learning. To ensure that the derived clinical frequency describes the 
subtype virulence as closely as possible, the data must represent the 
underlying epidemiological pattern as exhaustively as possible. We as-
sume this to be true for the national surveillance data. However, this is a 
known limitation for the GenomeTrakr dataset as specific sampling 
events might lead to overrepresentation of certain isolates that would 
bias the clinical frequency calculation. 

To make predictions more easily interpretable, we binned the 
outcome variable (i.e., clinical frequency) into three clinical concern 
categories: lower (<0.5), medium (0.5–0.7), and higher (>0.7). These 
thresholds were chosen considering over-/underrepresentation of clin-
ical samples in comparison to food and food processing samples. For 
example, for a clinical frequency of <0.5, fewer clinical samples are 
found in comparison to food-related isolates. This suggests an under-
representation of clinical samples. Similarly, a clinical frequency be-
tween 0.5 and 0.7 suggests a mild overrepresentation of clinical samples, 
and a clinical frequency > 0.7 suggests a clear overrepresentation, and 
hence a higher virulence potential. Nevertheless, this is a fairly straight 
forward attempt to categorize virulence that might not be optimal. 
Looking at the distribution of the GenomeTrakr isolates over the clinical 
frequency classes, we find the biggest proportion in the higher-risk class 
(46 %), followed by the lower-risk class (37 %) and the medium-risk 
class (17 %) (Fig. 1b). 

2.4. Feature description 

In order to find the best predictive features for Machine Learning, we 
compared three different genomic levels (i.e., virulence genes, pan- 
genome genes, and single nucleotide polymorphisms (SNPs)). For the 
virulence level, we used a database of 136 virulence-associated genes of 
L. monocytogenes. This database resulted from an exhaustive literature 
review of virulence genes, virulence factors, virulence-associated fac-
tors, and environmental stress tolerance genes (Njage et al., 2019). In 
order to obtain a set of genes for the pan-genome level, the rapid pro-
karyotic annotation tool Prokka (v1.12) (Seemann, 2014) was used to 
extract relevant genomic features from all the assembled genomes. The 
Prokka output was subsequently processed with Roary (v3.13.0) (Page 
et al., 2015) to identify core and accessory genes. 

The different isolate genomes were aligned to the virulence and pan- 
genome reference gene sets using two different methods. For assembled 
genomes, tblastn (NCBI-BLAST+ v2.11.0+) (Camacho et al., 2009) was 
used to align the genes and the database. Tblastn was run with the 
reference genes as a query, the genome as a subject, an E-value cut-off of 
0.001, and the number of best query/target hits limited to one. For raw 
reads, KMA (v1.3.15) (Clausen et al., 2018) with the − 1t1 flag was used 
to align the raw reads to the reference genes. To derive information 
about SNPs, all genomes were globally aligned to the EGD-e reference 
genome (Accession nr.: GCF_000196035.1). These global alignments 
were created with KMA using the same parameters described by Aytan- 
Aktug et al. (2021). The nucleotides of the individual isolates were 
compared to the nucleotides of the EGD-e reference and binary encoded 
(1 for matching nucleotides; − 1 for mismatching nucleotides). We chose 
binary encoding as described by Aytan-Aktug et al. (2020) as the study 
has found no significant performance increases for different encodings. 

2.5. Machine learning input matrix 

The individual isolates' level-specific features and associated clinical 
frequencies were used to create an input matrix for the ML model 
training. This matrix consists of the different genome isolates as rows, 
the different features (i.e., gene identities and binary absence/presence 
encoding) as columns, and an extra column containing the respective 
clinical frequency values. For the virulence and pan-genome level, the 
alignment identities were transformed into absolute values (i.e., 90 % ➔ 
0.9), which brings the input values into a numerical space between 0 and 
1 suitable for many machine learning algorithms. The SNPs features are 
already in a binary feature space of 1 and − 1, which can be used directly 
for Machine Learning. 

Fig. 1. a) Clinical frequency barplot for the national surveillance isolates. The isolates were grouped into three distinct categories, i.e., lower (<0.5), medium 
(0.5–0.7), and higher (>0.7), according to their clinical frequency value. b) clinical frequency barplot for the GenomeTrakr isolates. The isolates were grouped into 
three distinct categories, i.e., lower (<0.5), medium (0.5–0.7), and higher (>0.7), according to their clinical frequency value. 
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2.6. Feature filtering 

The number of features compared to the number of samples signifi-
cantly affects Machine Learning and is often referred to as the “curse of 
dimensionality”. If the feature space increases, it is also becoming more 
sparse. More information (i.e., samples) needs to be added to find the 
desired pattern or signals in this increasingly sparse space. However, in 
many cases obtaining more data is not feasible. Another solution is to 
reduce the feature space. This can be done in two ways: through 
dimensionality reduction algorithms or feature selection. For our study, 
we chose a feature selection method rather than dimensionality reduc-
tion to preserve the original features (i.e., %-identity of a gene, absence/ 
presence of a SNP). We applied this feature reduction step for the large 
pan-gene and SNPs feature space. For the pan-genome genes, we 
calculated the variance of the individual feature columns and sorted 
them in decreasing order. 

Subsequently, we explored the effect of different numbers of features 
on the model's predictive performance to find an optimal value. When 
the pangenome genes were used as input, the model benefited from an 
increased number of features up until about 120 features (see Fig. S1). 
Beyond that, the performance increase levelled off, which means that 
additional features do not seem to benefit the model's performance 
considerably. For the SNPs level, the same method was used. However, 
since the encoding for SNPs (i.e., presence and absence) was categorical 
rather than continuous, we used entropy as a measure for feature vari-
ation instead of variance. A similar trend was seen as for the pan-genes 
level, i.e., the performance increased with additional number of features 
(see Fig. S2) followed by levelling off to a constant at 140 SNPs. 
Therefore, the models did not benefit considerably from adding more 
features beyond this number. In summary, we chose 120 and 140 as the 
optimal number of features for the pan-gene and SNPs levels, 
respectively. 

2.7. Machine learning 

For the Machine Learning analysis, we used the sci-kit learn library 
(v0.23.1) (Pedregosa et al., 2011) in Python (v3.8.3). To find a model 
that is best suited to capture the underlying signal of the data we 
compared the performance of six different algorithms: Support Vector 
Machine with a linear kernel (SVC-lin), Support Vector Machine with a 
radial kernel (SVC-rad), Random Forrest (RF), Neural Networks (NN), 
LogitBoost, and Majority Voting. In addition, some of these models have 
been used in similar studies and showed promising results (Njage et al., 
2019). To prevent information leakage, which can bias the generaliza-
tion performance, we ensured that very closely related isolates were 
kept together in either the train, test, or validation set. This method is 
commonly referred to as “blocking” and has been suggested to account 
for the relatedness of biological samples such as phylogenetic relations 
(Arning et al., 2021; Lees et al., 2020; Whalen et al., 2022). Even though 
some dependence structures might be too complex to be fully addressed 
by blocking, it will still prevent the inflation of generalization error by 
limiting data leakage (Whalen et al., 2022). Nevertheless, blocking will, 
at least to some extent, hinder the model from prioritizing features that 
correlate with the outcome due to phylogenetic relations (Lees et al., 
2020). To mimic the distribution of our training set in the testing set, we 
are stratifying our split in regards to the clinical frequency. This should 
result in a closer approximation of the generalization error. We clustered 
the isolates using KMA as described by Aytan-Aktug et al. (2021) with a 
template and query coverage threshold of 98 %. 

The workflow for training the different algorithms was structured as 
follows: The input data with corresponding clinical frequency labels 
were split into a training and test set using stratified and grouped 5-fold 
cross-validation (i.e., stratified by clinical frequency, grouped by clus-
ters). The training set was subsequently used for training the algorithms. 
For each algorithm, the hyperparameters were tuned using repeated (n 
= 8) and grouped train-/validation (90 %/10 %) splits and random 

search cross-validation except for SVC-lin, for which grid search was 
used. The hyperparameter tuning splits were filtered to ensure that the 
validation set contained at least one isolate from each of the clinical 
frequency classes. The actual model training consisted of a pipeline that 
included the pre-processing steps. In the first pre-processing step, the 
input features were filtered according to the genomic level described in 
the method section. The number of samples for the underrepresented 
clinical frequency classes was increased using SMOTE (Chawla et al., 
2002) to improve the prediction performance of the underpopulated 
classes. Lastly, the performance on the test set was evaluated for the 
individual algorithms using the best-performing hyperparameters. We 
reported the performances using six measures: accuracy, precision, 
recall, F1-score, ROC-AUC, and MCC. The described workflow involving 
random splitting, model training, and performance evaluation was 
repeated 30 times. This resulted in 30 different values for each perfor-
mance measure and algorithm (i.e., 30 values times six performance 
measures times six algorithms). The mean performance and the 95 % 
confidence interval (CI) were calculated using Bootstrapping (n_data-
points = 30; n_reps = 100) and plotted in a bar diagram. The final 
machine learning training pipeline was deposited on GitHub (htt 
ps://github.com/agmei/LmonoVirulenceML). 

2.8. Model validation 

For an independent validation set, data was collected from 12 in 
vitro L. monocytogenes virulence studies for which WGS data was 
available (den Bakker et al., 2012; Briers et al., 2011; Chen et al., 2011; 
Hurley et al., 2019; Jensen et al., 2016; McMullen et al., 2012; 
Muchaamba et al., 2022; Steele et al., 2011; Wagner et al., 2020, 2022; 
Yin et al., 2019) The final validation dataset consisted of 101 isolates. A 
detailed list of accession numbers and virulence levels can be found in 
supplementary material Table S3. To standardize the output of the 
studies, we grouped the laboratory results into two categories, i.e., pu-
tatively hypervirulent (n = 33) and putatively hypovirulent (n = 68). We 
excluded the prediction on the SNPs level since this has been found to 
perform considerably worse. 

In order to make predictions from the trained ML models, the 
genomic data of the independent validation isolates was translated into 
the same feature space as for the training dataset (i.e., the individual 
genomes were screened against the reference databases, and the percent 
identities of the genes were reported). The input features were submit-
ted to the selected pre-trained ML models, which returned an estimated 
clinical frequency class. 

Our pre-trained models predicted three classes (i.e., lower, medium, 
and higher clinical frequency). However, the in vitro studies reported a 
binary outcome (putatively hyper/hypo virulent). To compare the ML 
predictions with the laboratory results, we regrouped the ML results 
from the validation dataset. The lower-risk clinical frequency class now 
corresponds to the putatively hypovirulent laboratory phenotype, while 
the medium and higher-risk classes corresponds to the putatively 
hypervirulent laboratory phenotype. 

In this experiment, we explored the performance of four different 
Majority Voting models on independent validation data. These models 
were trained using two different datasets (i.e., national and Genome-
Trakr) and input feature levels (i.e., virulence and pan-genome genes). 
The predicted clinical frequency classes were then validated against the 
laboratory phenotypes. The results were presented in confusion 
matrices, and the F1 performance measures were reported. 

3. Results 

3.1. Machine learning model selection based on national surveillance 
isolate data 

In this part of the study, we used isolate WGS data from two national 
surveillance programs to train multiple supervised Machine Learning 
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algorithms and compared their ability to predict clinical frequency. 
Looking at the results of the virulence gene level (see Table 1, Table S4), 
we can see that all chosen ML models perform similarly well. In 
particular, there is an overlap in the 95 % - CI interval for all six models 
(see Fig. 2). A comparable pattern is seen when we use absence and 
presence of SNPs as input features. However, the pan-genome gene level 
results show more variation between the performances of different 
models. This becomes especially clear for the Support Vector Machine 
with a linear kernel and the Random Forest classifier, as their 95 %-CI do 
not overlap. 

Comparing the different input levels to each other, we found that 
models trained at the pan-genome level generally yielded an increased 
performance. In particular, using pan-genome features over SNPs fea-
tures resulted in higher performances (i.e., no overlap of the 95 %-CI 
(see Fig. 2)) for all models except Random Forrest. Similarly, the use of 
pan-genome features in comparison to virulence features resulted in 
higher performances for four out of the six models. Only for the two tree- 
based classifiers (i.e., Random Forrest and LogitBoost) we didn't observe 
a clear difference in 95 %-CI (see Table S4). 

3.2. Assessing direct feature extraction from raw reads as faster 
alternative to assembly based methods 

As de novo assembly of entire genomes is time-consuming and 
computationally expensive, hence, we explored direct raw read align-
ment against the reference gene databases as a possible alternative. We 
compared the predictive performance of the different ML algorithms 
trained on the national isolate WGS data. We aligned the assemblies or 
raw reads to the virulence gene databases using BLAST and KMA 
respectively. As expected, the ML results yield similar performances 
between the two alignment methods, i.e., the 95 %-CI are overlapping 
for all of the six different ML models (see Fig. S3). 

3.3. Machine Learning model selection based on extended surveillance 
data from the GenomeTrakr network 

To see how more data affects the prediction performance of our ML 
and to explore if we can use public datasets to predict L. monocytogenes, 
we used isolate WGS data from the GenomeTrakr network. Similarly, as 
for the national surveillance data, we are comparing the predictive 
performance of different ML classification algorithms in combination 
with different genomic input features. There were marked performance 
differences across different ML algorithms (see Fig. 3). In particular, the 
tree-based classifiers (i.e., Random Forrest and LogitBoost) seem to 
perform better than the others. For the virulence level, the confidence 
intervals of the tree based classifiers do not overlap with those of the 
other classifiers (Random Forrest F1 CI [0.95, 0.96], LogitBoost F1 CI 
[0.93, 0.95]). Looking at the pan-genome level, only the majority voting 
classifier (F1 CI [0.92, 0.94]) has an overlapping confidence interval 

with the tree based classifiers (Random Forrest F1 CI [0.94, 0.96], 
LogitBoost F1 CI [0.94, 0.95]). 

Interestingly and in contrast to the results from the national dataset, 
there is only a little difference in performance between the virulence 
gene and the pan-genome level for most of the models. Only the Support 
Vector Machine with a radial kernel appears to benefit from using pan- 
genome features as input for the model training (virulence F1 CI [0.84, 
0.89], pan-genome F1 CI [0.88, 0.92]). Further, the results show that the 
overall performance variation is less than for the national data set, 
which can be seen by smaller confidence intervals. 

3.4. Validation of pre-trained ML models on independent WGS data with 
laboratory described virulence potential 

To assess how well our ML predictors perform on independent data, 
we collected a set of WGS sequences from laboratory L. monocytogenes 
virulence studies. The results found in these studies were categorized 
into putatively hypervirulent and putatively hypovirulent categories. 
The laboratory phenotypes were compared to the ML predicted clinical 
frequency classes of four pre-trained Majority Voting models. All of the 
models could predict reasonably well on the validation test set. Looking 
at Table 2, we can see that the model trained on the national surveillance 
isolate data using the pan-genome genes has the best overall 

Table 1 
Nested cross-validation F1 performances for the national surveillance and 
GenomeTrakr datasets.   

National surveillance GenomeTrakr 

Virulence 
level 

Pan- 
genome 
level 

SNPs 
level 

Virulence 
level 

Pan- 
genome 
level 

Linear SVC  0.81  0.89  0.77  0.83  0.82 
Radial SVC  0.82  0.88  0.74  0.87  0.90 
Random 

forrest  0.81  0.83  0.77  0.95  0.95 

Neural 
network  

0.79  0.84  0.74  0.91  0.89 

LogitBoost  0.84  0.85  0.75  0.94  0.95 
Majority 

voting  
0.84  0.88  0.76  0.92  0.93  

Fig. 2. National surveillance dataset F1-score comparison plot for three 
different genomic levels. The F1-scores represent the bootstrapping results and 
the 95 %-CI of the 30 repeated nested-cross validation performance values. 

Fig. 3. GenomeTrakr dataset F1-score comparison plot for two different 
genomic levels. The F1-scores represent the bootstrapping results and the 95 
%-CI of the 30 repeated nested-cross validation performance values. 
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performance (F1 = 0.76). It was able to classify 76 out of 101 isolates 
correctly. This model is followed by the model trained on GenomeTrakr 
data using pan-genome features (F1 = 0.73), national data and virulence 
genes (F1 = 0.71), and lastly, GenomeTrakr data using virulence genes 
(F1 = 0.68) with 73, 71, and 68 correctly classified isolates respectively. 
Similarly to the national dataset, models trained using pan-genome 
features seem to have increased performance over the models trained 
on the same dataset but using virulence features. 

For many ML applications, it is favourable to classify different classes 
equally well. However, in a food safety context, false negatives (FN), i.e., 
isolates that are highly virulent but predicted to be hypovirulent are of 
more prominent concern. Looking at the false negative values for the 
four models, we obtain a similar ranking as for the F1 performance 
measure (see Table 2, Table S5). The model trained on national data 
using pan-genome features still performs best (FN = 16), followed by the 
model trained on GenomeTrakr data using pan-genome features (FN =
17). The only difference is that the model trained on GenomeTrakr data 
on a virulence gene level (FN = 18) outperforms the model trained on 
national data using virulence genes (FN = 24). 

4. Discussion 

In this study, we aimed to build a well-performing Machine Learning 
model to predict the clinical frequency (i.e., virulence potential) of 
L. monocytogenes on a sub-species level. To do so, we compared the 
predictive performance of six different ML algorithms on two distinct 
WGS datasets from i) national surveillance programs and ii) a publicly 
available database. In addition, we explored the influence of different 
genomic levels (i.e., virulence genes, pan-genome genes, and SNPs) and 
direct read raw read alignment against the reference gene databases on 
the ML models. 

Overall, all six ML models yield good performances on both datasets. 
For the national surveillance data, the results showed only little differ-
ences in the performance of the different ML models. This indicates that 
all models could capture parts of the underlying connection between the 
selected genomic features and the clinical frequency. Interestingly, we 
found increased performance when predicting with pan-genome infor-
mation compared to using known virulence genes or SNPs to train the 
models. We can actually see that several of the virulence genes are 
present in all of our isolates regardless of their clinical frequency, hence 
reducing the value of these genes as predictive features. Another 
possible explanation might be that, by using pan-genome genes, we are 
capturing more complex patterns of the underlying relationships be-
tween gene features and virulence. Additionally, this could potentially 
indicate the presence of genes with currently unknown relationships to 
virulence in the pan-genome. 

The pan-genome genes selected in the feature filtering process can 
vary between the repeated training and test splits. Extracting the filtered 
genes from the 30 repeated splits, we obtained 282 pan-genome genes in 
total. A detailed distribution of these genes over the 30 splits can be 
found in Table S6. To further investigate which pan-genome genes were 
preferentially used by the ML to predict the clinical frequency, we 

extracted the pan-genome genes used by the best performing model for 
each algorithm. This resulted in a subset of 224 pan-genome genes. 
Around 90 % of the genes in the subset were classified as hypothetical 
genes without a known function. However, for the remaining 10 % (n =
22), Prokka returned an annotation. Interestingly, some of these genes 
were possibly linked to virulence in L. monocytogenes. For example, efeN, 
efeM, and efeU are genes related to iron uptake, which plays a vital role 
in many cellular processes (Begg, 2019; Jesse et al., 2014). Additionally, 
metal ions were also found to play an active role during microbial 
pathogen infection and in the host defence mechanism (Hood and Skaar, 
2012). Recent studies suggest that there is a link between antimicrobial 
resistance and virulence (Guillard et al., 2016; Scortti et al., 2018). 
Within the gene set, we could find multiple genes related to drug 
resistance, e.g., blaR1, blaI, marA, fosB. The filtering also selected rmlD 
and rmlC genes. It has been hypothesised that ramlD might be co- 
expressed with fosX, a homolog of fosB. This particular gene arrange-
ment has been described as unique to Listeria (Scortti et al., 2018). 
Further, the rmlABCD locus in L. monocytogenes is involved in L-rham-
nosylation of wall teichoic acids (WTAs), which has been described to 
contribute to in vivo virulence in mice (Carvalho et al., 2015). Apart 
from the possible link between antimicrobial genes and virulence, 
increased antimicrobial tolerance can also be beneficial for overall 
L. monocytogenes persistence, which increases the chances of a subse-
quent infection. Some of the filtered pan-genome genes with known 
annotation we could not link directly to pathogenicity, i.e., essD, essD_1, 
queC, esxB, wapA, wapA_4, TatAy, tatC2, and ybiA. However, a compar-
ative genomic analysis of a highly hypervirulent isolate XYSN and EGD-e 
identified wapA as one of the genes that have previously not been 
observed in L. monocytogenes (Yin et al., 2019). Surprisingly, arnT was 
also found in the filtered set. The arnT has been described to be involved 
in the modification of lipid A which is suggested to infer polymyxin 
resistance (Needham and Trent, 2013; Tavares-Carreón et al., 2016). 
Lipid A is a significant component of Gram-negative bacteria's outer cell 
wall. However, L. monocytogenes is a gram-positive bacteria. Addition-
ally, we aligned the 224 preferentially used pan-genomes to 
L. monocytogenes pathogenicity islands LIPI-1, LIPI-3, and LIPI-4. We 
were able to find five of the eight genes that comprise LIPI-3 (i.e., llsB, 
llsD, llsH, llsX, llsY). 

Generally, it is very interesting to look at the features which guide 
the learning of ML models. However, at this point, it is essential to 
emphasize that one should be cautious when concluding from the 
filtered features reported in this study and their importance to virulence. 
The set of features may seem reasonable for virulence prediction; 
however, we only work with a limited amount of data, making it difficult 
to generalize. Additionally, the low number of samples limits the choice 
of feature selection methods. In general, there is a lack of consensus 
about how to properly address the feature filtering for this type of 
studies. Possible alternative filtering methods would be according to 
multicollinearity between features or correlation of features with the 
outcome (i.e. clinical frequency). However, further research is needed to 
assess the difference between methods. Our feature selection method is 
driven by variation in the absence/presence of genes which does not 
necessarily concord with the importance of particular genes to virulence 
mechanisms. Hence, to be able to draw more conclusive and possibly 
casual relationships, the feature candidates would need to be further 
tested in vivo/vitro. 

Even though we were able to obtain ML models with great predictive 
performance, there are some limitations to our study. One of the major 
limitations is the availability of epidemiologically balanced data. Such 
data is needed to train an accurate ML model using the described 
methodology. To tackle this issue, we explored publicly available data in 
the framework of the GenomeTrakr network. Our study shows that the 
predictive performances of our Machine Learning algorithms benefit 
from an increased amount of data. This becomes apparent through the 
greatly increased performance across five out of six algorithms and 
overall narrower 95 % confidence intervals. Further, it can also be seen 

Table 2 
Validation dataset performance evaluation of the Majority Voting classifier pre- 
trained on the national surveillance and GenomeTrakr datasets and different 
genomic input levels.   

National surveillance GenomeTrakr 

Virulence 
level 

Pan- 
genome 
level 

Virulence 
level 

Pan- 
genome 
level 

F1  0.71  0.76  0.68  0.73 
Correctly predicted 

(out of 101 
isolates)  

71  76  68  73 

False negative (FN)  24  16  18  17  
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that the tree-based algorithms seem to immensely benefit from addi-
tional data. The Support Vector Machine with a linear kernel was the 
only algorithm for which we did not observe a similar trend (see 
Table 1). 

The ability to generalize to new data is an important aspect when 
evaluating the performance of trained Machine Learning models. This 
assessment is often done on a subset of samples held out during model 
training or preferably on an independent validation set. All our pre- 
trained machine learning models reported good performances on the 
independent validation set. However, we can see that there are differ-
ences in the generalized nested cross-validation performance of the 
models based on the training datasets and the model performance on the 
independent validation dataset. Different factors could cause this 
divergence. Even though a few countries have already implemented 
thorough L. monocytogenes WGS surveillance initiatives, acquiring the 
data remains to be an obstacle. Therefore, our study is limited to data 
from three countries (i.e., Denmark, France, and the USA). This may 
limit the applicability of our models to different geographical contexts. 
Our model might have issues correctly predicting virulence in isolates 
from other geographical regions as they were not included during 
training. Another possible source of disagreement might be the different 
ways of assessing virulence. The laboratory studies used for validation 
generally studied the effect of isolated mechanisms or factors, e.g., cell 
invasion or cell adhesion, as estimators for virulence. The clinical fre-
quency used in our study encompasses virulence in a broader context. It 
describes the overall clinical risk, which can be influenced by many 
factors such as infectious dose, persistence in the food processing envi-
ronment, and invasion ability. Hence, it might be challenging to 
compare these measures of virulence directly. All of these factors might 
affect the prediction ability of our models on the validation set resulting 
in relatively high false negative rates (i.e., prediction of isolates with 
high virulence as low virulent). These miss classifications could have 
major implications on public health. Hence, further assessment of the 
factors that lead to these misclassifications and additional refinement of 
the models is needed in the future. 

WGS analysis already finds broad application in surveillance and 
source tracking and could be extended to sub-species hazard charac-
terization. However, these techniques bring new challenges such as an 
increased demand for computational resources and the need for 
specially trained workforce to analyse the results which is generally not 
available in the industry. Hence, there would be a need for user-friendly 
tools/pipelines that can process the data and output easily interpretable 
results. 

Currently, FAO and WHO recommend the global control of 
L. monocytogenes without consideration of sub-species variation. How-
ever, they allow the use of subtype information for risk management in 
some countries (FAO and WHO, 2022). As more knowledge is gathered 
on hazard differences of L. monocytogenes, it might become more inter-
esting for future risk assessments and risk management procedures to 
also consider within species variation. 

For example in a recent meeting report, FAO and WHO (2022) pro-
posed how sub-species information could be used to rank 
L. monocytogenes isolates regarding their virulence. We can imagine that 
predictive ML models, similar to those described in our study, might be a 
beneficial addition to the proposed multifactorial characterization 
methods. As more research is conducted, similar hazard characterization 
models could maybe guide risk mitigation actions in case of 
L. monocytogenes contamination in the future. A possible scenario might 
be that risk management authorities could evaluate, in consideration of 
hazard characterization, food matrix, and consumer target, if a recall is 
necessary or not. Nevertheless, further research will be needed to show 
clearer evidence and evaluate the actual benefit. 

5. Conclusion 

The findings described in this paper bring us a step closer to 

microbial hazard characterization by virulence prediction of 
L. monocytogenes on a sub-species level. We were able to build well- 
performing Machine Learning models which can predict the clinical 
frequency of our training isolate datasets and an independent validation 
set. The results did not show a clear performance benefit of one 
particular Machine Learning algorithm over the others. However, our 
study indicates an overall benefit of using the pan-genome level. Hence, 
we suggest that using the Majority Voting classifier trained on a subset of 
pan-genome genes as features is the best choice for future applications. 
Furthermore, we found that the more rapid and less computationally 
intensive raw read alignment yields comparably accurate models as de 
novo assembly. 

As more research is highlighting the within species differences of 
L. monocytogenes, hazard characterization on sub-species level could 
gain more importance. The predictive models trained in this study could 
act as part of a multifactorial tool to characterize L. monocytogenes risk in 
the future. As more knowledge is gathered, such tools might be used as 
guidance during contamination mitigation procedures. 

Nevertheless, many factors contribute to a successful 
L. monocytogenes infection of the host. These factors range from cellular 
mechanisms to the ability to tolerate environmental stress and the 
resulting persistence in a food context. To facilitate a more detailed risk 
characterization, it will be crucial to continue to explore virulence and 
other external factors to obtain a deeper understanding of 
L. monocytogenes risk on a sub-species level. 
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